Personalized Surgery: Growing Your Own Bone

by Julie Barr on March 4, 2015 · 2 comments

in Alumni Life, Authors, Engineering, Health, In the News, Science

NinaTandon, EpiBone

Tissue-engineered bone, EpiBone

Bone-related surgeries, undertaken by nearly one million patients in the US each year, can fail due to unsuccessful integration of prosthetic or donor bone implants. Nina Tandon SM ’06 is working to solve this problem by growing human bone from the cells of the patient.

Tandon, CEO of EpiBone, leads the New York City-based company that is the first to grow human bones from stem cells, delivering custom-made bones. Not only are the bones more likely to integrate into the body because they are living, compatible bone, but also because they are created based on a CT scan of the target area and are made to fit exactly. “What we’re really proposing is a different view of the body,” says Tandon. “To view it as a renewable resource of stem cells that can regenerate new parts as you need them.”

Nina Tandon, EpiBone

Nina Tandon SM ’06 (right) in the lab at EpiBone

Tandon, who co-founded the EpiBone project two years ago, has spent the greater part of the past 10 years studying and testing bone and organ regrowth—and it all started at MIT.

As a graduate student studying bioelectrical engineering, Tandon did a research rotation with world-renowned professor and tissue engineering research scientist Gordana Vunjak-Novakovic.

“It was through the work I did at MIT with Gordana that I realized the power of tissue engineering and regenerative medicine and the way it would change medicine forever,” says Tandon. “By engineering human tissue and cells from their own human stem cells, we can change the way medicine is done. Whether it’s organ donation or drug testing, we can make the medicine fit the individuals.”

At EpiBone, Tandon works every day in the lab to perfect their method. With the technology in place, they have successfully grown bone and are in the testing stages. With one pilot study completed and another to begin this spring, they hope to be done with pre-clinical trials in the next three years and get on the path of FDA approval to bring their technology to market.

“I can’t wait for the day when someone who needs a transplant doesn’t have to wait on a list,” says Tandon. “And I’m hoping our research can get us one step closer to that day.”

A Fulbright Scholar, Tandon completed her PhD and an MBA at Columbia University. She is a senior TED fellow and co-author of Super Cells: Building with Biology, a book that explores the new frontier of biotech. Tandon was recently named one of CNN’s “7 ‘tech superheroes’ to watch in 2015.

{ 2 comments… read them below or add one }

John Carry March 27, 2015 at 2:13 am

You are doing good work, i hope you will success in your surgery. By using engineering and medical science we can improve easily and more result oriented.

Reply

Jason Hughes April 29, 2015 at 6:23 am

By using biotech engineering we can make surgeries more effective and comfortable.

Reply

Leave a Comment

Previous post:

Next post: